Sympathetic Denervation Accelerates Wound Contraction but Inhibits Reepithelialization and Pericyte Proliferation in Diabetic Mice

نویسندگان

  • Zhifang Zheng
  • Yu Wan
  • Yishu Liu
  • Yu Yang
  • Jianbing Tang
  • Wenhua Huang
  • Biao Cheng
چکیده

Previous studies focused on the effects of sympathetic denervation with 6-hydroxydopamine (6-OHDA) on nondiabetic wounds, but the effects of 6-OHDA on diabetic wounds have not been previously reported. In this study, treated mice received intraperitoneal 6-OHDA, and control mice received intraperitoneal injections of normal saline. Full-thickness wounds were established on the backs of mice. The wounds were sectioned (four mice per group) for analysis at 2, 5, 7, 10, 14, 17, and 21 days after injury. The wound areas in the control group were larger than those in the treatment group. Histological scores for epidermal and dermal regeneration were reduced in the 6-OHDA-treated group on day 21. The mast cells (MCs) in each field decreased after sympathectomy on days 17 and 21. The expression levels of norepinephrine, epidermal growth factor (EGF), interleukin-1 beta, NG2 proteoglycan, and desmin in the treatment group were less than those in the control group. In conclusion, 6-OHDA delays reepithelialization during wound healing in diabetic mice by decreasing EGF, but increases wound contraction by reducing IL-1β levels and the number of MCs. Besides, 6-OHDA led to reduced pericyte proliferation in diabetic wounds, which might explain the vascular dysfunction after sympathetic nerve loss in diabetic wounds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Nitric Oxide Donors in Wound Healing in Diabetes Mellitus

Introduction: Diabetic foot ulcer is a serious complication of diabetes mellitus; it consists of lesions in the deep tissues associated with neurological disorders and peripheral vascular disease in the lower limbs. Delayed wound healing in diabetes leads to long-term hospitalization and even amputation of distal organs. Diabetes mellitus is associated with decreased nitric oxide bioavailabilit...

متن کامل

PDGF-BB Does Not Accelerate Healing in Diabetic Mice with Splinted Skin Wounds

Topical application of platelet-derived growth factor-BB (PDGF-BB) is considered to accelerate tissue repair of impaired chronic wounds. However, the vast literature is plagued with conflicting reports of its efficacy in animal models and this is often influenced by a wide array of experimental variables making it difficult to compare the results across the studies. To mitigate the confounding ...

متن کامل

Lumican Accelerates Wound Healing by Enhancing α2β1 Integrin-Mediated Fibroblast Contractility

Lumican is a dermatan sulfate proteoglycan highly expressed in connective tissue and has the ability to regulate collagen fibril assembly. Previous studies have shown that lumican is involved in wound healing, but the precise effects of lumican on reepithelialization and wound contraction, the two pivotal aspects of skin wound healing, have not been investigated. Here we explored the roles of l...

متن کامل

The PHSRN sequence induces extracellular matrix invasion and accelerates wound healing in obese diabetic mice.

The PHSRN sequence of the plasma fibronectin (pFn) cell-binding domain induces human keratinocytes and fibroblasts to invade the naturally serum-free extracellular matrices of sea urchin embryos. The potency of acetylated, amidated PHSRN (Ac-PHSRN-NH(2)) is significantly increased, making it more active on a molar basis than the 120-kDa cell-binding domain of pFn. Arginine is important to this ...

متن کامل

Substance P accelerates wound healing in type 2 diabetic mice through endothelial progenitor cell mobilization and Yes-associated protein activation

Wound healing is delayed in diabetes due to a number of factors, including impaired angiogenesis and poor dermal healing. The present study demonstrated that subcutaneous administration of substance P (SP) accelerates wound healing in db/db type 2 diabetic mice (db/db mice). SP injection (10 nM/kg, subcutaneously) enhanced angiogenesis, induced the mobilization of endothelial progenitor cells (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017